

Faculty	Agriculture, Engineering and Natural Sciences
School	Science
Department	Computing, Mathematical and Statistical Science
Subject	Calculus I (Old Curriculum)
Subject Code	MAT 3611
Date	May/June 2023
Duration	Three Hours
Marks	100

FIRST OPPORTUNITY EXAMINATION PAPER

Examiner: Mr. P. Haihambo, UNAM

Moderator: Prof. J-B. Gatsinzi, BIUST

INSTRUCTIONS:

- (i) This question paper consists of FIVE pages (including this front page).
- (ii) Answer ALL questions in section A and ANY 3 out of 4 questions in section B.
- (iii) Only non-programmable calculators may be used.
- (iv) Try to understand each question before you answer it.
- (v) Number the questions clearly and present your solutions in a logical manner.
- (vi) Use proper mathematical terminology.
- (vii) The full marks for this paper is 100.

UNIVERSITY OF NAMIBIA EXAMINATIONS

Section A.[40 marks]

Answer ALL questions in this section.

Question A1.[6 marks]

Give a precise definition of the following concepts.

a)
$$c \in \mathbb{R}$$
 is an accumulation point of a subset A of \mathbb{R} . [2]

b)
$$\lim_{x\to c^+} f(x) = -\infty$$
, where $c \in \mathbb{R}$ is an accumulation point of D_f . [4]

Question A2.[8 marks]

Determine whether the statement is true or false. If it is true, explain why. If it is false, explain why or give an example that disproves the statement.

Let $I \subseteq \mathbb{R}$ be an interval with $c \in I$ and $f: I \to \mathbb{R}$ a function.

- a) If f is differentiable at c, then both one sided derivatives of f exist at c. [4]
- b) If $\lim_{x\to c} f(x) = L \in \mathbb{R}$, then both one sided limits of f exists at c and they are both equals to L.

Question A3.[18 marks]

a) Verify the following statements by applying the definition.

(i)
$$\lim_{x \to 2} \frac{x-1}{x^2} = \frac{1}{4}$$
. [6]

(ii) Let
$$a, b \in \mathbb{R}$$
. The function $f(x) = \sqrt{x-a} + b$ is continuous at a . [4]

b) Solve the following equation/inequality for $x \in \mathbb{R}$. In the following

$$\lfloor x \rfloor := \max\{z \in \mathbb{Z} : z \leq x\}$$
 is the greatest integer/floor function

and

 $\lceil x \rceil := \min\{z \in \mathbb{Z} : z \geq x\}$ is the least integer/ceiling function.

(i)
$$\lceil \lfloor x \rfloor \rceil = 3$$
.

(ii)
$$4 \le \lceil x^2 + 2x \rceil \le 15$$
. [6]

Question A4.[8 marks]

a) Use the Squeeze theorem to show that

$$\lim_{x \to -\infty} \left(\frac{\lceil x \rceil}{x + 2023} \right) = 1,$$

where $\lceil \cdot \rceil$ is the least integer/ceiling function defined as in question A3 above.

Hint:
$$u - 1 < \lceil u \rceil < u + 1$$
 for all $u \in \mathbb{R}$.

b) Evaluate
$$\lim_{x \to \sqrt{\pi}} \left(\frac{ae^{\sin(x^2)} - a}{\pi - x^2} \right)$$
, where $a \in \mathbb{R} - \{0\}$. [4]

Section B [60 marks]

Answer ANY 3 OUT OF 4 questions in this section.

Question B1. [20 marks]

a) By first computing each of the one sided limit, compute the limit if it exists and explain why, if it does not exist.

$$\lim_{x \to 1} \left(\frac{\lceil x^2 + 1 \rceil}{\lfloor x^2 + 1 \rfloor} \right)$$

, where $\lceil \cdot \rceil$ and $\lfloor \cdot \rfloor$ are the least integer/ceiling function and greatest integer/floor function defined as in question A3. [7]

- b) Consider the function $f(x) = \cos\left(\frac{1}{x}\right)$.
 - (i) Give the domain of f and show that 0 is an accumulation point of the domain of f. [3]
 - (ii) Come up with two sequences $(x_n)_{\mathbb{N}}$ and $(y_n)_{\mathbb{N}}$ in \mathbb{R} with

$$1. \lim_{n \to \infty} x_n = 0,$$
 [2]

1.
$$\lim_{n \to \infty} x_n = 0,$$
 [2]
2. $\lim_{n \to \infty} y_n = 0,$ [2]

$$3. \lim_{n \to \infty} \cos\left(\frac{1}{x_n}\right) = 0,$$
 [2]

4.
$$\lim_{n \to \infty} \cos\left(\frac{1}{y_n}\right) = -1,$$
 [2]

5. With reasons, conclude whether
$$\lim_{x\to 0} \cos\left(\frac{1}{x}\right)$$
 exists or not. [2]

Question B2. [20 marks]

Consider the function

$$f(x) = \ln \left| \frac{1 - xe^2}{x + 1} \right|$$

- a) Find the domain D_f of f. [1]
- b) Find the x and y-intercepts. [2]
- c) Find $\lim_{x\to c} f(x)$, where c is an accumulation point of D_f which is not in D_f . Identify any possible asymptotes. [3]
- d) Find $\lim_{x \to \pm \infty} f(x)$. Identify any possible asymptote. [2]
- e) Find f'(x) and f''(x). [3]
- f) Find the intervals of increase and decrease. [3]
- g) Discuss the concavity of f and give any possible point(s) of inflection. [3]
- h) Sketch a well labeled graph of f. [3]

Question B3. [20 marks]

- a) Show that $\sin^{-1}(\tanh x) = \tan^{-1}(\sinh x)$ for all $x \in \mathbb{R}$. [5]
- b) Find the derivative y', where $y = \sec^{-1}(2^x + \sinh(2^x))$. [5]
- c) Show that of all the rectangles with a given area A, the one with smallest perimeter is a square.
- d) A runner sprints around a circular track of radius 100 m at a constant speed of 7 m/s. The runner's friend is standing at a distance 200 m from the center of the track. How fast is the distance between the friends changing when the distance between them is 200 m?

Question B4. [20 marks]

- a) Express $25 \cosh x 24 \sinh x$ in the form $R \cosh(x \alpha)$ giving the values of R and $\tanh \alpha$, where $R, \alpha \in \mathbb{R}$.
- b) If $f(x) = 25 \cosh x 24 \sinh x$, use your answer in a) above to find the critical number of f and classify it. [4]
- c) If f is continuous on \mathbb{R} and $a \in \mathbb{R}$, prove that

$$\int_{a}^{\sqrt{1+a^2}} x\sqrt{4+4a^2} f(x^2-a^2) dx = \sqrt{1+a^2} \int_{0}^{1} f(x) dx.$$
 [4]

d) Evaluate the following integrals.

(i)
$$\int_{\pi/2}^{3\pi/4} \sin^5(2x) \cos^4(2x) dx$$
. [4]

(ii)
$$\int_0^{\pi/2} \cos(x) \sin(10x) \ dx$$
. [3]

END