

FACULTY	AGRICULTURE, ENGINEE	RING AND NATURAL SCIENC	E	
DEPARTMENT	ENVIRONMENTAL SCIEN	CE		
SUBJECT	SPATIAL MODELLING & SIMULATION			
SUBJECT CODE	GSM3712			
DATE	NOVEMBER 2022			
DURATION	3 HOURS	MARKS	100	

SPECIAL/SUPPLEMENTARY EXAMINATION

Examiner: Eliakim Hamunyela, PhD

Internal Moderator: Martin Hipondoka, PhD

INSTRUCTIONS

- 1. Work in an orderly manner and present your work as neatly as possible.
- 2. While most of the marks will be awarded for content, candidates must bear in mind the importance of presentation, i.e. insight and critical thinking.
- 3. Number your questions correctly and clearly.
- 4. This paper consists of ONE (1) page (excluding this front page).
- 5 Answer all questions

1.	Differentiate between the following terms:				
	a. Temporal grain and temporal extent	[4]			
	b. Process and pattern	[4]			
	c. Cross-level and ecological fallacy	[4]			
	d. Agent-based modelling and mathematical modelling	[4]			
2.	Motivate why the definition of a "model" as a "simplified representation of	reality			
	should still be considered relevant despite technological advancement.	[4]			
3.	In some contexts, aggregation and segregation as spatial processes can be vie	wed a			
	mutually re-enforcing processes. Explain, by giving two examples, why this	view i			
	plausible (reasonable).	[6]			
4.	Mention and discuss three types of variable in system dynamic models.	[6]			
5.	Explain how the choice of spatial scale may influence the patterns we see	[2]			
6.	Discuss three ways how spatial simulation models may be used.	[6]			
7.	Suppose you developed a model, but your model output does not produce the patter				
	you have observed in real-world. As a modeller, mention and discuss the ste	eps you			
	would follow to improve your model. Provide a justification for your answer.	[10]			
8.	Using the stock-flow model, do the follow:				
	Create a concentual model for a global hydrological model	[10]			
	 a. Create a conceptual model for a global hydrological model. b. List all the state variables in your global hydrological model created in (a) 				
	b. List all the state variables in your global hydrological model created in (a)	[5]			
	c. List all processes in your global hydrological model created in (a) above	[5]			
	d. State what would be the appropriate grains and extents of your	• •			
	hydrological model if you want to use it to understand the impact of inc	-			
	greenhouse gases emission on global water cycle. Motivate your answer.				
9.	Justify why tackling a simulation problem using a simple random walk				
٠.	sometimes is a good choice.	[8]			
10	State three examples whereby the use of "Levy flight" model would be appro				
	Motivate your answer.	[6]			
11	. Motivate the necessity for model evaluation.	[4]			
	Critique over reliance on simulation models to address real world problems.	[4]			
		F - 1			

---END---