

FACULTY	AGRICULTURE, ENGINEERING AND NATURAL SCIENCES			
SCHOOL	AGRICULTURE AND FISHERIES SCIENCES			
DEPARTMENT	FISHERIES AND OCEAN SCIENCES			
SUBJECT	MATHEMATICS FOR AGRICULTURE			
SUBJECT CODE	F3531CA			
DATE	OCTOBER 2023			
DURATION	3 HOURS			
MARKS	100			

SECOND OPPORTUNITY EXAMINATION QUESTION PAPER

Examiner: Ms. L T Linus

Internal Moderator: Ms. H N Nafuka

This question paper consists of FIVE printed pages including this cover page.

Instructions to Candidates

- 1. Attempt ALL questions in Section A and ANY THREE questions in Section B
- 2. Non-programmable calculators may be used

UNIVERSITY OF NAMIBIA

EXAMINATIONS

SECTION A (40 marks)

ANSWER ALL QUESTIONS IN THIS SECTION

Question A1.

[7 marks]

- (a) Find the simple interest payable on a loan of N\$120 000 at 10% p.a. at the end of 5 years.
- (b) Find the balance if N\$500 is invested at an annual interest interest rate of 12% for 2 years, compounded annually. [3]
- (c) The students in Ellie's class walk, cycle, or drive to school in the ratio of 2:1:4. If 8 students walk, how many students are there in Ellie's class altogether? [2]

Question A2.

[7 marks]

Let A and B be sets such that $A, B \subseteq U$. U is a universal set containing all alphabets.

- (a) Suppose that $A = \{a, c, d, e, g, n, m\}$, $B = \{a, d, g, n, k, h\}$. Determine the following: $|A\Delta B|$ [3]
- (b) Let D and E be sets. Use the Venn Diagram to show the following sets,

(i)
$$D \cap E^c$$

(ii)
$$D\Delta E$$

Question A3.

[10 marks]

[2]

Given the matrices

$$\mathbf{A} = \begin{pmatrix} -1 & 4 \\ 2 & -5 \end{pmatrix}, \, \mathbf{B} = \begin{pmatrix} 4 & 0 & 4 \\ -2 & 1 & -3 \\ 1 & 2 & 1 \end{pmatrix}, \, \mathbf{C} = \begin{pmatrix} 3 & 6 & -3 \\ 0 & 5 & 2 \\ 1 & -3 & -4 \end{pmatrix}$$

Find

(i)
$$5B - 3C^T$$
, (ii) $det B$, (iii) A^{-1} [4, 3, 3]

Question A4.

[9 marks]

(a) Determine the *nth* term for the given sequence:

$$1, \frac{3}{4}, \frac{5}{9}, \frac{7}{16}, \frac{9}{25}$$

[2]

(b) The 8th term of the geometric sequence is 32, and the 5th term is 18. Find the first term and the nth term. [3,4]

Question A5.

[8 marks]

(a) Find the derivative of the following functions;

(i)
$$f(x) = 5x^2 - \frac{2}{x^3}$$

(ii) $g(x) = 4x^4 - 2x^3 - 3x^2 + 7$

(ii)
$$g(x) = 4x^4 - 2x^3 - 3x^2 + 7$$
 [3]

(b) Write the following equation in exponential form

[2]

[3]

$$t-1 = \log_{10}(x+2)$$

SECTION B (60 marks)

ANSWER ANY THREE (3) QUESTIONS FROM THIS SECTION

Question B6.	$[20 \mathrm{marks}]$					
(a) In the universal set $U = \{-8, -4, 0, 1, 2, 4, 7, 8, 9\}$ let $A = \{x \in U \mid B = \{x \in U \mid x \text{ is prime}\}$	$ x^3 \in U $ and					
List the elements of $A, A \setminus B$, and of $(A \cup B)^c$	[2,3,3]					
(b) Let A and B be sets. Using mathematical reasoning, prove that $(A \cup A)$	$B)^c = A^c \cap B^c$ [6]					
(c) Make use of the Venn diagram to solve this problem. There are 57 first-year fishery students. Of them, 13 do not like any of the modules. For the rest, it is known that 25 like Diversity, 19 Mathematics, and 20 like Chemistry. Furthermore, 6 of them like all the three mentioned modules, 8 like both Diversity and Mathematics, and 7 like both Mathematics and Chemistry. Find how many students like:						
(i) both Diversity and Chemistry						
(ii) Only one module	[6]					
Question B7.	$[20 \mathrm{marks}]$					
(a) In an arithmetic sequence, $a_3 = 10$ and $a_{10} = 31$. Find						
(i) the common difference d and the first term a_1	[4]					
(ii) the sum of 21^{st} terms	[3]					
(iii) k such that $a_k = 52$	[3]					
(b) Solve the system below by any method.						
2x - y - 3z = -7						
-x + 2y - 3z = 11						
x + y + 4z = 4						
	[10]					

Question B8.

[20 marks]

- (a) Maria started a weight loss dieting exercise with a weight of 150 lbs. Her weight reduced to 145 lbs after 5 weeks of dieting. Express the weight loss as a percentage of her body weight.
- (b) In an anti-malaria campaign, it is claimed that regular spraying with a new insecticide will reduce the mosquito population by 25% each year.
 - (i) If the initial population is P_0 , find the formula for the population P after t years. [4]
 - (ii) How long will it take to halve the initial population? [3]
- (c) Fit an exponential model to the following data:

[10]

t	0.4	0.8	1.2	1.6	2	2.3
W	800	975	1500	1950	2900	3600

Question B9.

[20 marks]

- (a) An open rectangular tank oh height h metres with a square base x metres is to be constructed so that it has the capacity of $300m^3$. Prove that the surface area of the four walls and the base will be $(\frac{1200}{x} + x^2)$ square metres. Find the value of x for this expression to be minimum. [5,5]
- (b) Find the critical values of the function $f(x) = x^3 2x^2 4x$ and determine whether they are maximum or minimum values [5]
- (c) Find the following definite integral;

$$\int_{1}^{0} (x^3 - 3x^2 + 3\sqrt{x}) dx$$

[3]

(d) Find the area under the curve.

$$f(x) = x + 2$$
, on $[-1, 4]$

[2]